20 research outputs found

    Energy management strategy in dynamic distribution network reconfiguration considering renewable energy resources and storage

    Get PDF
    © 2010-2012 IEEE. Penetration of renewable energy sources (RESs) and electrical energy storage (EES) systems in distribution systems is increasing, and it is crucial to investigate their impact on systems' operation scheme, reliability, and security. In this paper, expected energy not supplied (EENS) and voltage stability index (VSI) of distribution networks are investigated in dynamic balanced and unbalanced distribution network reconfiguration, including RESs and EES systems. Furthermore, due to the high investment cost of the EES systems, the number of charge and discharge is limited, and the state-of-health constraint is included in the underlying problem to prolong the lifetime of these facilities. The optimal charging/discharging scheme for EES systems and optimal distribution network topology are presented in order to optimize the operational costs, and reliability and security indices simultaneously. The proposed strategy is applied to a large-scale 119-bus distribution test network in order to show the economic justification of the proposed approach

    Modeling the Microgrid Operator Participation in Day-Ahead Energy and Reserve Markets Considering Stochastic Decisions in the Real-Time Market

    No full text
    The penetration of the distributed energy resources in the distribution networks is facilitated by the structure of the microgrids (MGs). The MG operator (MGO) can schedule the MG resources to meet the local load and participate in the wholesale markets. In this article, a new model is developed for the MGO participation in the day-ahead (DA) (energy and reserve) and the real-time (RT) energy markets under uncertainties. For this purpose, the effect of the uncertainties of demand and generation from renewable energy sources on the MGO decisions is represented in a two-stage stochastic model. The MGO bids in the DA and RT markets are modeled as the first and the second stage decisions, respectively. Moreover, the information gap decision theory method is used to model the behavior of the MGO to address the uncertainties of the RT energy market price and the probability of calling the reserve. The results show that as the RT price uncertainty radius increases, the energy sold to the RT market decreases/increases in the risk-averse/risk-taker strategy. Furthermore, to manage the uncertainty related to the probability of calling the reserve, the reserve capacity provided by the MGO in the risk-averse and the risk-taker strategies decreases and increases, respectively

    A Novel Evolutionary-based Deep Convolutional Neural Network Model for Intelligent Load Forecasting

    Full text link
    The problem of electricity load forecasting has emerged as an essential topic for power systems and electricity markets seeking to minimize costs. However, this topic has a high level of complexity. Over the past few years, convolutional neural networks (CNNs) have been used to solve several complex deep learning challenges, making substantial progress in some fields and contributing to state of the art performances. Nevertheless, CNN architecture design remains a challenging problem. Moreover, designing an optimal architecture for CNNs leads to improve their performance in the prediction process. This article proposes an effective approach for the electricity load forecasting problem using a deep neuroevolution algorithm to automatically design the CNN structures using a novel modified evolutionary algorithm called enhanced grey wolf optimizer (EGWO). The architecture of CNNs and its hyperparameters are optimized by the novel discrete EGWO algorithm for enhancing its load forecasting accuracy. The proposed method is evaluated on real time data obtained from datasets of Australian Energy Market Operator in the year 2018. The simulation results demonstrated that the proposed method outperforms other compared forecasting algorithms based on different evaluation metrics.©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This work was supported by FEDER funds through COMPETE 2020 and by Portuguese funds through FCT, under Grant POCI-01-0145-FEDER-029803 (02/SAICT/2017). Paper no. TII-20-5506.fi=vertaisarvioitu|en=peerReviewed

    Day-Ahead Market Participation of an Active Distribution Network Equipped with Small-Scale Compressed Air Energy Storage Systems

    Full text link
    © 2010-2012 IEEE. Large-scale compressed air energy storage (CAES) is conventionally used in power systems. However, application of CAESs at the distribution level is limited because of differences in design and efficiency. On the other hand, application of electrical batteries suited for distribution networks (DNs) faces also challenges from high investment cost and significant degradation. In this regard, this paper presents the participation of an active distribution system equipped with a small-scale CAES (SCAES) in the day-ahead wholesale market. To make CAES applicable to DNs, thermal-electrical setting design of the SCAES coupled with a packed-bed heat exchanger is adopted in the operation of the grid, where SCAES performs as an energy storage for DNs to surpass existing deficiencies of battery banks. The electrical/thermal conversion rate has been modeled for the SCAES operation. Moreover, the operation strategy of the SCAES is optimally coordinated with an electric vehicle charging station (EVCS) as an alternative energy storage technology in deregulated DNs. To make EVCS simulation more realistic, Gaussian Copula probability distribution function is used to model the behavior of the EVCS. The results obtained from different case studies confirm the value of SCAES as a reliable energy storage technology for DNs

    Risk-Oriented Multi-Area Economic Dispatch Solution with High Penetration of Wind Power Generation and Compressed Air Energy Storage System

    Full text link
    © 2010-2012 IEEE. This paper investigates the risk-oriented multi-area economic dispatch (MAED) problem with high penetration of wind farms (WFs) combined with compressed air energy storage (CAES). The main objective is to help system operators to minimize the operational cost of thermal units and CAES units with an appropriate level of security through optimized WF power generation curtailment strategy and CAES charging/discharging control. In the obtained MAED model, several WFs integrated with CAES units are considered in different generation zones, and the probability to meet demand by available spinning reserve during N - 1 security contingency is characterized as a risk function. Furthermore, the contribution of CAES units in providing the system spinning reserve is taken into account in the MAED model. The proposed framework is demonstrated by a case study using the modified IEEE 40-generator system. The numerical results reveal that the proposed method brings a significant advantage to the efficient scheduling of thermal units' power generation, WF power curtailment, and CAES charging/discharging control in the power system

    New Hybrid Deep Neural Architectural Search-Based Ensemble Reinforcement Learning Strategy for Wind Power Forecasting

    Get PDF
    Wind power instability and inconsistency involve the reliability of renewable power energy, the safety of the transmission system, the electrical grid stability and the rapid developments of energy market. The study on wind power forecasting is quite important at this stage in order to facilitate maximum wind energy growth as well as better efficiency of electrical power systems. In this work, we propose a novel hybrid data driven model based on the concepts of deep learning-based convolutional-long short term memory (CLSTM), mutual information, evolutionary algorithm, neural architectural search procedure, and ensemble-based deep reinforcement learning (RL) strategies. We name this hybrid model as DOCREL. In the first step, the mutual information extracts the most effective characteristics from raw wind power time series datasets. Second, we develop an improved version of the evolutionary whale optimization algorithm in order to effectively optimize the architecture of the deep CLSTM models by performing the neural architectural search procedure. At the end, our proposed deep RL-based ensemble algorithm integrates the optimized deep learning models to achieve the lowest possible wind power forecasting errors for two wind power datasets. In comparison with fourteen state-of-the-art deep learning models, our proposed DOCREL algorithm represents an excellent performance seasonally for two different case studies.© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.fi=vertaisarvioitu|en=peerReviewed
    corecore